Alliance for Construction Excellence & RH & Associates, Inc.

Understanding Project Delivery Methods

Project Delivery

Why Does It Matter?

Project Delivery Historical Perspective

Code of	Classical	Middle Ages	Renaissance	Private Sector	Public Sector	Emergence	Passage of	Most States
Hammurabi	Greece	Cathedrals	Emergence of	Re-emergence	Re-emergence	of CMAR	Federal	Have APDM
Design-	Design-	Design-	Design-Bid	of	of	&	Acquisition	Legislation
Build	Build	Build	Build	Design-Build	Design-Build	JOC	Reform Act	
•		•		•		¥	↓	•
1800 B C	450 B C	1200 A D	1450	1960s	1980s	1990 s	s 1996	2000+
D.C.	D. C.	A.D.						

A Quick Look at Partnering

Low Bid vs. Partnering World Class (late 1980s – early 1990s)

<u>Category</u>	<u>Result Area</u>	<u>Results</u>			
Cost	Total Project Cost (TPC)	10% reduction			
	Construction Administration	24% reduction			
	Marketing	50% reduction			
	Engineering	\$10 per hour reduction			
	Value Engineering	337% increase			
	Claims (% of TPC) - \$	87% reduction			
	Profitability	25% increase			
Schedule	Overall Project	20% reduction			
	Schedule Changes	48% reduction			
	Schedule Compliance	Increased from 85% to 100%			
Safety	Hours without lost time accident	3 million vs. 48,000 industry standard			
	Lost work days	4 vs. 6.8 industry standard			
	Doctor Cases	74% reduction			
	Safety rating	5% of national average			
	Source: Construction Industry Institute BS 102-1 (1996)				

Low Bid vs. Partnering World Class (late 1980s – early 1990s)(con't.)

<u>Category</u>	<u>Result Area</u>	<u>Results</u>
Quality	Rework Change Orders Direct work rate	50% reduction 80% reduction 42% increase
Claims	Number of Claims Projects with claims	83% reduction 68% reduction
Other	Job satisfaction	30% improvement

Source: Construction Industry Institute RS 102-1 (1996)

Alternative Project Delivery Why does it matter?

Why not use a project delivery method that embraces partnering and teaming concepts?

Trends in the Public Sector Market:

- Design Build (DB)
- Job Order Contracting (JOC)
- Construction Manager at Risk (CMAR)

Project Delivery Systems*

APDM Becomes Law in Arizona

HB 2340 was passed and became law August 15, 2000.

Arizona APDM Projects

Contracted or Identified Since 8/15/00:

ADMINSTRATION/GENERAL PROJECTS =	\$3.0B
HEAVY/HIGHWAY PROJECTS =	\$.7B
REC./ENTERTAIN. PROJECTS =	\$.6B
SCHOOLS =	\$1.1B

TOTAL APDM = \$5.4B

CMAR = 61% DB = 37% JOC = 2%

Project Delivery Methods & Processes

Processes

<u>Delivery Method</u>	Qualifications Based Selection	Price Competition Selection
Design Bid Build:	None or Pre-Qualified Select Bidders' List and then Price	Low Bid
Design Build:	QBS only & Negotiated Contract	QBS & Design Competition & Price
Construction Manager at Risk:	QBS only & Negotiated Contract Opt. out at GMP	None
Job Order Contracting	QBS only & Negotiated Contract	QBS & Coefficient Competition

A Quick Look at Qualification Based Selection

Qualifications Based Selection for APDM Projects

- Use of sophisticated technology in construction is rapidly increasing
- Construction is becoming highly specialized:
 - "Smart buildings"
 - Environmentally responsible construction
 - Need for flexible-use
- Innovative solutions are needed when:
 - Complex options must be considered
 - Technology changes very quickly

Qualifications Based Selection is no longer a luxury, but a necessity.

Qualifications Based Selection for APDM Projects

Selection criteria used should meet these basic requirements:

- They must reflect an aspect of performance that is important to project success.
- Each criterion must be <u>as objective as possible</u> for the type of variable being measured.
- The weighting of each criterion should reflect its importance to the project and its potential impact on project success.
- Provide a level playing field and a fair process.

Qualifications Based Selection for APDM Projects

- **Typical Selection Criteria:**
- Offeror's qualifications and past performance (including references)
- Qualifications of key personnel
- Financial status
- Safety record
- Quality assurance program or quality management plan
- Project management methods
- Information technology systems

Design Bid Build

- Architect/Engineer (Qualifications Based Selection)
 - Design services
 - Management of bid process
 - Construction administration
- General Contractor / Subcontractor (Low Bid)
 - Construction

Design Bid Build Methodology Considerations

Characteristics

- Linear process
- Owner's involved in design phase
- Separate contracts help define responsibilities
- Competitive bids

<u>Concerns</u>

- Costs not known until after design
- Contractor's knowledge is missing from design
- Delays in linear process effect whole schedule
- Can create adversarial relationships

Design Build (QBS or Best Value)

- Design services and construction services
- Management of design services
- Management of bid process & trade subcontracts
- Open book or lump sum

Basic Difference Contract Language

<u>Design Bid Build</u>

The owner warrants to the contractor that the drawings and specifications are complete and free from errors.

Design Build

The design builder warrants to the owner that it will produce documents that are complete and free from errors.

Basic Difference - Approach

<u>Design Bid Build</u>

- Any Problem With Design = \$ Profit
- Make the Problem Bigger = \$\$ More Profit

Design Build

- Any Problem With Design = \$ Lost Profit
- Quick Resolution = Fewer \$ Lost

Design Build Methodology Considerations

Typical DB Benefits

- Mirrors CMAR, plus
- Early knowledge of price 2 step process
- Competitive Design
 Innovation 2 step process

Success Elements

- Recognition and understanding of the complexity of the process
- Owner must have experience in controlling a design builder.
- Owner must limit their involvement in and direct control of design
- Pre-selection documents must be well defined
- Owner must embrace partnering relationship with the design build team
- Architects/engineers are subcontracted to the GC – not owner's rep.
- Quality/cost trade offs are internal to the Design Builder

- Job Order Contracting (QBS or Best Value)
 - J.O.C. contractor will perform on multiple projects
 - Work quantities will be unknown at the time of award
 - Trade subcontractor may perform as J.O.C. contractor
 - Finance services, maintenance services, operations services, preconstruction services, design services and other related services may be included.*

Job Order Contracting

Methodology Considerations

JOC Benefits:

- Responds rapidly to owner's needs and schedules.
- Reduces backlog of maintenance, repair, and renovations.

Know costs before committing funds.

Decrease up-front costs while maximizing the \$ to in-place construction and local subs.

JOC Characteristics:

- Typically one contractor
- Database oriented
 - Missed items
 - Forced items
 - Included/Not included
- Typically multi-year
- Success Criteria:
- Relationship based
- Requires checks & balances

Construction Manager at Risk

- Architect/Engineer (Qualifications Based Selection)
 - Design services with active CMAR participation
 - Some construction administration
- Construction Manager at Risk (QBS + Negotiated Contract)
 - Preconstruction services & construction services
 - Management of bid process & trade subcontractors
 - "Open Book" philosophy
 - Finance services, maintenance services, operations services, and other related services may be included.

Construction Manager at Risk Methodology Considerations

<u>Benefits</u>

Typical APDM Benefits:

- Team approach from the start
- Increased owner control
- Value engineering (innovation)
- Controlled purchasing
- Open book" financial approach
- Fewer Claims/Litigation
- Improved collaboration
- Common goals and objectives
- Increased value for each dollar spent
- Shorter project schedules
- Improved construction quality
- Construction planning
- Phased construction option
- Fewer warranty problems
- Improved service response to owner

Unique to CMAR:

- Change management by owner advocate
- Strong "check & balance"
- Continuous budget control
- Quality/cost tradeoffs are within owner control

Success Elements

- Owners become involved with contractors during design phase
- The roles of the CMAR & A/E in pre-construction need to be clearly defined
- Owners must be comfortable with "atrisk" contracts
- GMP factors that must be considered:
 - Timing of GMP
 - Contingency level
 - Avoid confusion of design vs. construction responsibility
- Owners must have a strong basis of the project estimate
- Owners must embrace a partnering relationship with the contractors

The Benefits from a 3rd Party Perspective

- Much more of a team approach
- Fewer RFI's
- Fewer design/construction related changes
- Improved long term relationships
- Client is getting more of what they want
- The team is able to honestly discuss costs (including escalation)

The Benefits from a 3rd Party Perspective

- Great construction means, methods and materials input during design
- Multiple GMP approach (phasing opportunities)
- Better quality project overall
- Open book philosophy makes owner's more comfortable

The Benefits from a 3rd Party Perspective

- Reduced involvement from design team during construction
- Lower costs in today's market

The Benefits from the Owner

- Enhanced Communication
- Much More Budget Control
- Enhanced Control of Subcontractor Selection
- More Cost Effective Construction Estimates
- Owner Gets More of What They Want

Challenges from a 3rd Party Perspective

- Team gets into more of a cost reduction mode than a value engineering mode
- Roles and responsibilities not totally understood
- Contractors having challenges with conceptual cost estimating
- Team members not expressing their expectations adequately (process and roles & responsibilities)

Challenges from a 3rd Party Perspective

- Still too many RFI's
- Additional time requirements for design team with the contractor
- The misconception that Partnering is not needed as much
- Contractors not understanding their true role in budget management

Challenges from a 3rd Party Perspective

- New contractors to the methodology not able to get work
- Truly identifying the expected scope during pre-construction services
- The contractor being selected too late in design

Challenges from the Owner

- Subcontractor Roles Have Changed
- Contractors Not Understanding Pre-Construction Services
- New Skills Required by the Owner's Staff
- Design to Budget
- Getting Upper Management to Understand the Process Fully (contractor under contract with no construction going on)

Things to Consider for the Future

- A scoping meeting with the CMR and the team to develop
 - Roles & Responsibilities
 - Methodology/Process Expectations
 - Communication Plan
 - Scope/Responsibility Matrix
 - Project Goals
 - Development of a Project Charter

Things to Consider for the Future

- Partnering is an effective tool but the format needs to change
- Additional time for design team
- Define what the GMP means
- Define the Contingency items, how they are spent and where any remaining dollars go
- Look for opportunities to introduce new contractors into the mix

Things to Consider for the Future

- Do a lessons learned after every project
- Focus on applying true value engineering
- Select the CMR firm around the same time or no later than 15% into the design
- 3rd party cost estimates (It's not about trust!)

Alternative Project Delivery Why does it matter?

Used Properly APDM can:

- Reduce schedules
- Reduce cost overruns
- Reduce design errors & omissions
- Reduce RFI's

- Reduce material impacts
- Reduce change orders
- Reduce warranty problems
- Reduce claims & litigation
- Can be a lot more fun!

Note: Claims and litigation on design bid build projects through the early 1990's amounted to 20 cents on the construction dollar (Ref. PM Journal, Sept. 1994). Today the number of claims is down, but the amount of the awards are up.

Special Note: There have been NO claims or litigation on Arizona APDM projects since the enactment of the legislation with over \$5 billion dollars in contracts!

Conclusion

APDM's are <u>alternative</u> delivery methods to design bid build. There is a strong national trend to use APDM's. They add to the tool box to help improve the success of project implementation, but are not a guarantee! With the right pre-project planning, the right people, the right selection process and the right team, the right pre-construction process, APDM should provide a better chance of project success!

Presented by: Renee Hoekstra, CVS RH & Associates, Inc. "Partnering & Value Specialists" www.rhpartnering.com rhpartnering@earthlink.net

(800) 480-1401

Additional Information: Gary Aller, Director Alliance for Construction Excellence Del E. Webb School of Construction Ira A. Fulton School of Engineering Arizona State University <u>http://construction.asu.edu/ace</u> Email: <u>Gary.Aller@asu.edu</u> Phone: (480) 965-5324

Questions?

